Intonational Patterns in a sample of spontaneous Indian English dialogue

English intonation contrasts are grammatical: they are exploited in the grammar of the language to make distinctions in meaning (Halliday, 1967). Since intonation contrasts are central to standard English grammar, they are expected to be found throughout the different countries where English is spoken as a first language (eg Benson et al 1987). However, the question arises, what are the consequences for spoken English language of contact with first languages other than English? English is spoken throughout India, but there is no one Indian English as such. Since India is a multilingual country, English spoken by a Punjabi (from northern India with Punjabi as the first language) would be expected to differ from the English of a Tamilian (southern India). For this paper, one sample of Indian English (spontaneous dialogue) spoken by Hindi speakers is studied using the SFL (Systemic Functional Linguistics) framework of intonation (Halliday, 1967, 1970; Halliday and Greaves, 2008), and Praat, a speech analysis software. Phonetic and phonological perspectives will be presented, including a brief discussion of the question of syllable timing in this dialect of Indian English. The main focus in this paper will be on the discussion of the grammatical and semantic aspects of Indian English intonation in terms of the influence of the first language: for example, contrasts in the semantics of demanding information (Wh & Yes/No questions) versus giving information (statements), with some suggestions for future research directions in this area of systemic linguistic description.

Stefania Degaetano-Ortlieb¹, Hannah Kermes², Ashraf Khamis³, Jörg Knappen⁴, Noam Ordan⁵ and Elke Teich⁶

¹,²,³,⁴,⁵,⁶Universität des Saarlandes
¹s.degaetano@mx.uni-saarland.de, ²h.kermes@mx.uni-saarland.de, ³ashraf.khamis@uni-saarland.de, ⁴j.knappen@mx.uni-saarland.de, ⁵noam.ordan@uni-saarland.de, ⁶e.teich@mx.uni-saarland.de

Information Density in Scientific Writing: A Diachronic Perspective

We report on a project investigating the development of scientific writing in English from the mid-17th century to present. While scientific discourse is a much researched topic, including its historical development (see e.g. Banks (2008) in the context of Systemic Functional Grammar), it has so far not been modeled from the perspective of information density. Our starting assumption is that as science develops to be an established sociocultural domain, it becomes more specialized on the one hand and more conventionalized on the other. Thus, denser linguistic encodings are required for specialist communication to be functional, potentially increasing the information density of scientific texts (Halliday and Martin, 1993: 54–68). More specifically, we pursue the following hypotheses:

- As an effect of specialization, scientific texts will exhibit greater encoding density over time, i.e. denser linguistic forms will be increasingly used.
- As an effect of conventionalization, scientific texts will exhibit greater linguistic uniformity over time, i.e. the linguistic forms used will be less varied.

We further assume that these effects are measurable in the linguistic signal in terms of information density (see below).

We have built a diachronic corpus of scientific texts from the Philosophical Transactions and Proceedings of the Royal Society of London. We have chosen these materials due to the prominent role of the Royal Society in forming English scientific discourse (cf. Atkinson, 1998). At the time of writing, the corpus comprises 23 million tokens for the period 1776–1869 (other time periods will follow). The corpus has been normalized, tokenized and part-of-speech tagged.
For analysis, we combine methods from register theory (Halliday and Hasan, 1985) and computational language modeling (Manning et al., 2009: 237–240). The former provides us with features that are potentially register-forming (cf. also Ure, 1971; 1982); the latter provides us with models with which we can measure information density. We thus pursue two complementary methodological approaches:

- Pattern-based extraction and quantification of linguistic constructions that are potentially involved in manipulating information density. Here, all linguistic levels are relevant (cf. Harris, 1991), from lexis and grammar to cohesion and generic structure. We have started with the level of lexico-grammar, inspecting for instance morphological compression (derivational processes such as conversion and compounding) and syntactic reduction (e.g. reduced vs full relative clauses).
- Measuring information density using information-theoretic models (Shannon, 1949). In current practice, information density is measured based on the probability of an item conditioned on context as $\text{ID}(\text{item}) = -\log_2 P(\text{item} | \text{context})$. For our purposes, we need to compare such probabilities to assess the relative information density (cross-entropy) of texts along a timeline. Here, we apply various probability distance measures, notably Kullback-Leibler divergence (Fankhauser et al., 2014).

The ultimate goal is to test hypotheses about which kinds of linguistic patterns contribute to relative information density and to what extent: e.g. if reduced relative clauses increase over time, what is the effect on information density, if any, and how big is the effect?

The present research is an extension of our previous work on register formation in contemporary scientific English on the basis of the SciTex corpus (Kermes and Teich, 2012; Degaetano-Ortlieb et al., 2014; Teich et al., to appear), to which we are now adding a diachronic perspective.

Acknowledgment: This work is supported by Deutsche Forschungsgemeinschaft (DFG) under grant SFB 1102 “Information density and linguistic encoding” (www.sfb1102.uni-saarland.de).

References:

